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Entropy production in diffusion-reaction systems: The reactive random Lorentz gas
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We report the study of a random Lorentz gas with a reaction of isomerizAtie® between two colors of
moving particles elastically bouncing on hard disks. The reaction occurs when the moving patrticles collide on
catalytic disks, which constitute a fraction of all the disks. Under dilute-gas conditions, the reaction-diffusion
process is ruled by two coupled Boltzmann-Lorentz equations for the distribution functions of the colors. The
macroscopic reaction-diffusion equations with cross-diffusion terms induced by the chemical reaction are
derived from the kinetic equations. We usetatheorem of the kinetic theory in order to derive a macroscopic
entropy depending on the gradients of color densities and which has a non-negative entropy production in
agreement with the second law of thermodynamics.
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I. INTRODUCTION with their dispersion relation®21-23. In this way, the mac-

During recent decades, irreversibility and transport prop_roscopic _reaction—diffusion equat_ions couldl be derived in a
erties have been intensively studied in low-dimensional dySystematic way from the underlying dynamics. The analysis
namical system§l—16]. It has been shown that the macro- revealed the existence of cross-diffusion effects induced by
scopic transport coefficients can be related to thehe reaction. Such cross diffusion is typically overlooked in
characteristic quantities of the microscopic dynaniids  the phenomenological approaf?4,25.

Moreover, results have also been obtained for the entropy The purpose of the present paper is to address the problem
balance in dynamical systems sustaining transport processef entropy production in such reaction-diffusion systems
of diffusion [4,11-14, electric conductiori6], cross effects Wwith cross diffusion. As shown here below, it turns out that
[8,9], and shear viscosityl0]. For these processes, the irre- the entropy production of the standard phenomenological en-
versible entropy production of nonequilibrium thermody- tropy may be negative because of the cross-diffusion effects.
namics could be derived from the underlying microscopicAlthough this problem only happens for extreme particle
dynamics. densities it nevertheless sheds some doubts on the phenom-

In addition to transport, reaction processes have also beegnological assumptions. In order to clarify this issue, we here
investigated from the viewpoint of dynamical systemsconsider arandomLorentz gas with a fraction of catalytic
theory. Reaction-diffusion processes play a crucial role irdisks where the isomerizatioA=B occurs with a given
physicochemical systems far from thermodynamic equilib-probability p,. The colorA or B carried by the moving par-
rium and they have been much studied at the macroscopitcle may correspond to the spin of the particle, in which case
level of description on the basis of phenomenological nonthe catalytic disks model some spin-flipping impurities in the
equilibrium thermodynamicEL7]. system. For dilute Lorentz gases, we can use kinetic theory

Recently, several microscopic models of reaction-and linear Boltzmann-Lorentz equatiof6,27. Thanks to
diffusion processes have been introduced and analyzed #uch master equations, we can derivetatheorem which
order to understand the foundations of the phenomenologicallows us to obtain an expression for the entropy. We prove
assumptions. The simplest reactions are isomerizationat the corresponding entropy production is non-negative
A=B where the two species andB may be considered as Wwith respect to the time evolution induced by the macro-
colors or spins carried by the moving particles and changingcopic reaction-diffusion equations.
or flipping upon reactive even{sl8]. Models of reaction- The plan of the paper is the following. The kinetic equa-
diffusion processes can be obtained by coupling the isometions of the reactive Lorentz gas are introduced in Sec. I
ization to the deterministic diffusion of multibaker or Lor- where we prove thél theorem. The macroscopic reaction-
entz gas dynamical systerfis9—23. In the early version of diffusion equations are derived in Sec. Ill. The entropy bal-
Refs.[19,20, the isomerizatiolA= B was supposed to hap- ance is obtained and discussed in Sec. IV. Conclusions are
pen with unit probability upon the passage of the particle todrawn in Sec. V.

a catalytic site where the reaction occurs. In Héfl], a

spatially pgriodic .rea_ctive Lorentz gas was introdut_:gd in Il. THE REACTIVE LORENTZ GAS

which the isomerizatioPA=B occurs with a probability

0=py=<1 when the particle collides on catalytic disks. The In the random Lorentz gas, fixed circular scatterers corre-
catalytic disks are few among the disks which compose thepond to heavy particles and moving point particles to light
Lorentz gas. Spatially periodic Lorentz gas and multibakeiones. The system is defined by the density of the scatterers
models with reactiolA=B have been studied in detail and their radiusa, and the velocity of the light particles
their diffusive and reactive modes were constructed togetherv(cosg, sin¢), the system being two dimensional. Because
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the magnitude of the velocities is fixed, the velocity vector g=fr—fg, (8)

can be characterized solely by the angldiere, we consider _ .
a random distribution of the disks with low densityca2. ~ @nd take the difference of Eq#4) and (5), we obtain the

The reactive Lorentz gaf21] consists of two different €guation

types of light particlesA and B that have a free flight be- av(n-2pon,) [+ @
tween the collisions. Some of the fixed scatterers act as catad,g+ v - Vg = 2 f de’ |sin
lysts, i.e., if anA particle collides with such a scatterer it 2 -7
becomes & with the probabilitypyg, and vice versa. The —o(F. o)1 - davpan.oF 9
catalysts have a density. The reaction scheme is 9] PonQ(F ), ©
) _ which rules thereaction sectorOne can notice that the last
A+ disk= A+disk, (1) equation describes a decay in time of the functicthat can
be separated from the rest of the solution,
B + disk= B + disk, 2 _ .
@ 0.0 = HPVN(F, ). (10
A+ catalyst= B + catalyst, with probabilityp,. (3)  The equation foih reads
The colors can be considered as the two components of spin ah+ 5. Yh= av(n-— 2p0nr) e
one-half carried by the moving particles. The evolution of sin 2

the system can be characterized by the two distribution func-

tions of the two component&(r,v) and fg(f,v). The inte- X[h(r,¢") = h(F,<p)], (1)
ral over the velocities of these functions gives the number , .

gensity at poinf of each componern or B. H%ving in mind luhich has the same form as H®.

that the time evolution of the distribution functidp (fg) is

also influenced by the presence of the other compoB&A)

which may collide with a catalyst, we obtain the system of ~The Boltzmann entropy of the system of E¢$). and (5)

A. H theorem

equations is given by the sum of the entropies of the two components:
0 0
oo _al-pon) (7| et _ Lis s
ofp+uv -Vip= Torf_w de’ | sin > [fa(F, ") s= | dg| faln fA+ fgln t) (12)

avpon, [+ - o' where Boltzmann’s constant is taken equal to urkigys 1.
—fA(F, @) ] + %f de’ |sin > Inserting into the integral on the right-hand side the time

evolution Egs.(4) and (5), we get for the variation of the
X[fg(F,@") = fA(F, @)1, (4) entropy

fO -
_ i gs= | deiIn —[=5-Vis+ C(fa o]
. =, _av(n-pen t f ‘P{ A A'B
ofg+v-Vig= ol 2_p0 r)J d efa

-9 R
f !
> ‘[ s(r,@")

"I'sin
+1n P [- 5 Vig+C(f fA)]} (13)
+ L LTU- B Bs )
. avpgn, (7 o= ¢ ef
_fB(ra(P)]"' v Po rf dQD, Sln¢) ¢ B
2 -7 2 where the collision integraC(f,, fg) has the form
X[fA(F-(P’) - fB(Fu(P)]- (5 of fﬂTd .o go' |:av(n— pon,) f f
fg) = "|'sin AT
One can observe that the total system of moving particles (faTe) ¢ 2 2 (fa= )
A andB follows a diffusive process that can be characterized
by the the sum of the distribution functions, avpon,(f, fA)] (14)
f=f,+fg.
ATE with the notations
The time evolution of is given by a linear Boltzmann equa- .
tion, also known as the Boltzmann-Lorentz equafi®®,27: fa=Tfalf,0,0), (15
.=, avn (7 P 7o
atf+v-Vf:7J de’ |sin © =\ [1(7.0) - 17, 0)]. fa=falfe". D), (16)
) fe=Tfa(l@.1), 17
This equation rules the so-calleliffusion sectorin order to fl.= fo(f, @' 1) (18)
have the time evolution of both distribution functions, we B~ BLLP
need a further equation in addition to H@). This relation can be written in the form of a balance

If we introduce the quantity equation
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- - T T

0tS: - V ) 'J5+ Jg, (19)
0 m
where
- 0 0 [ 2 ]
Jszfd(Pl;<fA|n_+fB|n _> (20)
fA fB -l 1
is the entropy current and o0 -
a.U , ) (P —_ ! , f! _2
0'S=—quo de’ | sin (n—ponr){(fA—fA)In—A -
4 fa
fr fr — =1 |
+ (5~ fp)n =2 | + pon,| (F4— fa)ln -2 3 . . . . .
( B) J Po r|:( g~ fa) f 30 1 5 3
vg/c
+(fa—fg)in A}} FIG. 1. The dimensionless eigenvalueg/e of g (29) versus
the dimensionless wave numheg/c with q= \qx+qy
=0 (21
is the entropy productiofi24]. One can see in this general c=av(n-2pyn;) for X=h. (27)

form of the entropy production that it is non-negative underT

he distribution functiorX being a real function, the Fourier
the consistency condition that

coefficients with negative index are the complex conjugates
0<pon, <n. (22) of their positive index counterpart¥_; =X, for anyl. If we

o o take solutions in the form
Therefore, the second law of thermodynamics is satisfied for

the entropy(12) during the reaction-diffusion process de- X(F,t) = U, exp(— yt)exp(iq - ), (28)

scribed by the Boltzmann-Lorentz equatidd$ and (5). we obtain the eigenvalue equations

Ill. DERIVATION OF THE MACROSCOPIC Oc— i O+ iq 812c
REACTION-DIFFUSION EQUATIONS - YU, + iuX—ZYU,_1+ iv= 5 U T a2Yr
In order to understand the time evolution of the system (29)

and, in particular, of the macroscopic densities of partiéles
and B, we have to solve the coupled Boltzmann-Lorentzfor | € Z. Expanding in powers of the wave numhgrthe
equations4) and (5). Since these equations are linear, theydecay rates are given by
yield an eigenvalue problem and their solutions can be de- 2 5 2
composed in terms of eigenfunctions. The time evolution can y= I 3(41”- v q
then be determined by the spectrum of the associated eigen- 4%-1 l6c
values.

A convenient way to find the solution of Eq§) and(11)

?+0(q", (30)

with 1=0,1,2,... andy=\q +q Figure 1 shows the spec-
trum obtained by solving numerlcally the eigenvalue equa-
- ¢ . . tions (29) for c>0. We observe that the branch forO has
sin— [X(F,¢") = X(F,9)] a convexity which is opposite to the one of the other
branches fot=1,2,....Moreover, all the branches terminate
(23) on the line y=2c, which fixes the maximum value of the
wave number for each branch. This feature prevents the ei-
genvalues from becoming of opposite sign, hence avoiding
instability in agreement with the stability provided by tHe

- c((*
(9tX+17-VX=§J dQDI

is by writing the distribution function¥=f or h as a Fourier
series in the velocity angle,

+oo _ theorem. For the diffusion sector, the constaris always
X(F,,t) = > X(F,t)e'e. (24 positive. However, the sign of the constantay change in
|=—o0 the reaction sector and we must treat separately the cases

As a consequence of E(7) or (11), the Fourier components ¢>0 andc<0.

X, satisfy the following coupled differential equations: A. The case 0< pgn, <n/2

~id dy+idy 8l°c

aX +UL¥X|_1+U e X (25) In this case, we have that>0 in both the diffusion and
2 2 1-4 reaction sectors.
with _The_ previous spectral analysis shows _tha_t, after_ a relax-
ation time of the order ofavn)™2, the dynamics is dominated
c=avn for X=f (26) by the first Fourier componeni, X,1, andX_:
and X = Xo+ X,1619 + X_je7'¢. (31)
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In order to obtain a macroscopic description, we introduce - - 3
the densities J,=-DVp, fort> - (44)
p+ = PA+PB=f f(F, p)de = 27fy, (32 . R
- J=-D"Vp_ fort> ———, (45)
8av(n - pgn,/2)
+a . . . ..
p.=pp—pg= J 9(F, ©)de = 27 (33) with the diffusion coefficient
o 3v
and the currents " 16an’ (46)
O A and the reactive diffusion coefficient
J+E\]A+JBZJ vf(r,)de, (34)
—ar 3
D= —— % (47)
o 16a(n - pyn,/2)
J=Jp-Jg= f vg(F,@)de. (35  Equation(44) is the expression of Fick's law for the particles

while Eg. (45) is its reactive analog. Substituting Edqg44)
We observe that the zeroth-order Fourier compofignfthe ~— and(45) into Egs.(40) and(42) for the densities, we obtain
distribution functionf in the expansiori24) is related to the the diffusion equation
total densityp, =pa+pg according to Eq(32). Similarly, Eq. 9p. = DV2 (48)
(33) shows that the zeroth-order componggtof the distri- P+ P
bution functiong gives the difference of densities =p,  as well as the reaction-diffusion equation
—-pg- On the other hand, the first-order Fourier components _
X,; andX_; are related to the currents. As a consequence, we 4p-=D"V%p_ = 2xp., (49)
obtain the distribution functions andg in terms of the cor-  with the reaction rate constant
responding densities and currents
N ) K = 2avpyh;. (50)
f= 2—<p+ + —26-J+), (36)  This result shows that the reaction rate constant is the prod-
™ v uct of the speed with the cross sectionaof the disks,
multiplied by the densityn, of the catalytic scatterers and
g= i<p_ + %5 ) j_) _ (37) weighted by the probability of reactigw. The two equations
2m v (48) and (49) show the existence of two slow modes in the
system corresponding to the decay rd®0) with =0,

The distribution functions for the speciédsandB are thus namely, thediffusive modef the dispersion relation,

given by
5 I'=Dg?+0(q", diffusive mode, (51)
fa= E(pAJ' 02’ 'JA>’ (38 and thereactive modef the dispersion relation,
. I'=2x+D"¢?+0(q%, reactive mode. (52
B~ Z_T<PB‘L 20 'JB>- (39 The equations of motiori48) and (49) determines the

time evolution of the densitiepa=(p,+p_)/2 and pg=(p,

Equations(25) for I=0 and +1 then lead to the coupled -,_)/2 according to the coupled reaction-diffusion equations
equations

.. dipa=DaaV?pa+ DasV2ps — k(pa= pe), (53
hps =~ V-, (40)
8 2 dipg = DpaV2pa + DgeV2ps + k(pa = pp), (54)
> av - >
Ody=— ?nL - %Vp+, (41)  where the transport coefficients can be identified as
D+DY
and Daa=Dgg= > (55
ap-==V -J_—4avponp-, (42)
D-D" 56
- 8a n\- v?- Dag=Dga= - 56
atJ_:——”(n—@)J_—U—V i (43) 2
3 2 2

The important conclusion is here that there appears a phe-
We notice that the currents relax on a fast time scale so thatomenon of cross diffusion which is induced by the reaction.
we can assume that they quickly adjust to their values in &his phenomenon has been previously found and analyzed in
quasistationary state as reaction-diffusion models based on the periodic Lorentz gas
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T (@) r (b) B. The casepgn,=n/2
. 1 2 q o 1 2 a In this case, we remark that E3) for X=h has a van-
ishing coefficientc=0 in the reaction sector so that the equa-
4l . tion for X=h is purely advective,
gh+0-Vh=0. (62
2 -2
/ Its solutions are given bj=h(r-ot), and g=e 2h(r-uvt)
obeys
FIG. 2. Eigenvalues F versus the wave numbey= \s‘”q)z(+q§ in Hg+U - ﬁg = - 2«gQ. (63)

the regime 6< pon, <n/2 wherec>0: spectrum ofa) the diffusion i ) i o .
sector:(b) the reaction sector. The parameter valueswd, an N this case, there is no reactive diffusion coefficient that

=1, andpyn,=0.1251. The spectra are similar up to rescalings of Characterizes the reactive process.
the axedand a vertical translation in the reaction sectni for the
other values of the parameters as long aspgn, <n/2. C. The casen/2<pgn,<n

) ) As we noticed beforepgn, cannot exceed the valuefor
and the multibaker map in Refsl9-23 where the coupled  ¢gnsistency. In this case, we have that E2®) for X=f still

reaction-diffusion equation$s3) and (54) have been ob- haq 5 coefficient> 0 in the diffusion sector but Eq23) for

tained by other methods. In the random Lorentz gas, we cak=p has a negative coefficient<0 in the reaction sector.

use the kinetic theory in order to derive these macroscopifccordingly, the spectrum shown in Fig. 1 is upside down in

equations and the value of the cross-diffusion coefficients e reaction sector and the slowest reactive mode is no longer
the same as before.

Dao=Das = — 3vpohy (57) Here, we must consider the decay régé) with [=1. The
ABT EBAT T Bdan(n - pon/2) dispersion relation of the reactive mode is now given by
We notice that these coefficients vanish with the reaction =2« +D"'¢?, (64)

probability p, and the density of catalysts. Accordingly, in

. A . _with the new reaction constant
the absence of reaction, the cross-diffusion terms vanish Wlt¥lv

the reaction term and we recover two uncoupled diffusion , _ 2av
equations forA andB particles. K = ?(2” ~ Poy), (65
The coupled reaction-diffusion equatiofs3) and (54)
can be rewritten as and the new reactive diffusion coefficient
dpoa=—V -Ipn— k(pa—pp) (58) D= (66)
tPA A PA~ PB)» 16&(2p0nr _ n)
N The reaction-diffusion equation$3) and (54) still hold in
dpg==V -Jg+ k(pa—ps), (590 this case. The coefficients5) and(56) are still given by the
_ diffusion coefficientD of Eq. (46) but the reaction-diffusion
in terms of the currents coefficient D should now be replaced by its new value
o ® (66). Furthermore, the reaction rakeshould be replaced by
Fi=- D+D" Tp. - D-D" ¢ (60) the new valug65).
A 2 Pa 2 'Pe Figure 3 depicts the spectra in the diffusion and reaction

sectors in the case/ 2 <pyn, <n. With respect to Fig. 2, the
0 ® spectrum is unchanged in the diffusion sector but upside
- __b+D7-. D-DV- down in the reaction sector.
Jg = Vps Vpa, (61) » i
2 2 Therefore, a transition occurs at the critical valpgn,
=n/2 and a different regime exists for high concentrations
which shows that the current of one species is influenced bgf catalysts and high values of the reaction probabjityln
the gradient of the other species because of the chemicéhis new regime, the frequency of reactive events becomes of
reaction. the same order of magnitude as the collision frequency so
In addition to the diffusive and reactive slowest modes,that the isomerizationd=B are nearly as frequent as the
we also find faster modes often referred to as kinetic modeslastic collisions. This deeply affects the way the reaction
All these modes exist in both the diffusion sector ruled byproceeds and, thus, modifies both the reaction rate and the
Eq. (23) for X=f and in the reaction sector ruled by Eg3) reactive diffusion coefficient. We can no longer speak of
for X=h. All these modes are characterized by dispersiordiffusion-controlled reaction as in the case:@yn, <n/2 of
relations which form a whole spectrum. Figure 2 depicts theSec. Il A where diffusive paths composed of many succes-
whole spectra of the diffusion and reaction sectors in the cassive elastic collisions on inert disks separate the consecutive
0<pon, <n/2. encounters with the catalytic disks. In contrast, in the case
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- (a) - (b) show that the corresponding entropy production always re-
. . , ¢, ‘. ) p mains non-negative.
-1 B A. Entropy without gradients
2 Supposing that the system is sufficiently dilute, the phe-
2 , nomenological irreversible thermodynamics supposes that
the entropy density has the following expression:
p° p°
FIG. 3. Eigenvalues F versus the wave numbey=/qZ+qj, in s=paln p_ +pgln p_ (67)
A B

the regimen/2 < pgn, <n wherec>0: spectrum ofa) the diffusion

sector;(b) the reaction sector. The parameter valueswerd, an This entropy density is obtained from the entrof®?) of

=1, andpon,=0.8751. The spectra are similar up to rescalings of kinetic theory by using the expansiof@8) and (39) of the

the axegand a vertical translation in the reaction sedtwd for the  djistribution functions and by keeping the terms in the densi-

other values of the parameters as longn&8< pyn, <n. ties themselves and discarding terms in the gradients. The
reference density is thus given Ip§}=27f°, which amounts

n/2<pgn, <n of the present subsection, the catalytic disksto supposing equality of the masses of the partidlesdB.

are more numerous than the inert disks so that the moving The variation of the entropy densigy/in time is given by

particle can very often have a ballistic flight between twothe balance equation

consecutive encounters with catalytic disks. As a conse- Lo

quence, the reaction is controlled by the local dynamics be- as==V -Js+os, (68)

ENegn ne_ﬁt-r&el?h?r(])rlng d'SkS'l This ?{EamBICTt IS Suprsed Iﬂere calculated by using the coupled reaction-diffusion equa-
€ described Dy the eigenvajues of In€ bollzmann-Lorentg (58) and(59). The entropy current density is obtained

equation which have the largest rates and correspond to t :
shortest time scales. These eigenvalues are found at the b@ﬁ_terms of the currentts0) and(61) of particlesA andB as

tom of the spectrum of the diffusion sector in FigaB Since - - o . p°
the dynamics on short time scales controls the reaction, we Js=daln——+Jgln ——, (69
thus find these eigenvalues at the top of the spectrum of the
reaction sector in Fig.(®). This explains that the spectrum while the entropy production takes the form
in Fig. 3(b) looks upside down with respect to the one in Fig. -
3(a). The preceding reasoning also suggests that corrections o= x(pa— pe)ln Pa_j .Vﬂx _j _M (70)
beyond the approximation given by the coupled Boltzmann- sSTUA IR e A e P g
Lorentz equationg4) and (5) could become important as
Poly — N.

In the following, we shall focus on the case<®gn,
<n/2 where the catalysts are dilute enough.

>

In order to obtain an expression that is quadratic in the cur-
rents, we invert Eq$60) and(61) and obtain the gradients in
terms of the currents as

>

J

2K - >
IV. THE ENTROPY BALANCE Ja, 2K 53 71
D 3U2( A B)! ( )

Voa=-
In this section, we derive the equation for the balance of

entropy from theH theorem in two approximations for the -

entropy density. In kinetic theory, we have a well-defined oo = . _ﬁ(j _J ) 72)

expression for the entropy which guarantees that the entropy Pe D 32 A BT

production is always non-negative. However, at the level of o .

the macroscopic description given by the reaction-diffusior>UPstituting in the entropy productidi0), we get

equationg53) and (54), the entropy is given as an approxi-

mation of the expressiofl2) of kinetic theory and we must os= k(pa— pp)in Pay adi+2B35-Jg+¥35, (73
verify the domain of validity where the corresponding en- Ps
tropy production is non-negative. with the coefficients

The first approximation we consider is based on the stan-
dard phenomenological entropy defined in irreversible ther- = i(l _ ﬁ) (74)
modynamics of reaction procesg@4,25. We show that the pa\D 302/’
corresponding entropy production is non-negative in a broad
range of values for the densitigg, and pg including the (1 1
thermodynamic equilibrium state but there is a small domain B= 3—<_ + —> ) (75)
where the entropy production corresponding to this approxi- v \PA P
mation fails to remain non-negative.

Therefore, we consider a second approximation which in- y= _(i _ ﬁ) (76)
cludes extra terms involving the gradient of the densities. We pg\D 302
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The first term in the entropy productiai3) is always
non-negative becauge-y)In(x/y)=0 for all positive val-

ues of the real numbessandy. On the other hand, the last

PHYSICAL REVIEW E 71, 036147(2009

33.970..pp= pg=0.029437..p, fory=0.5.

(86)

terms constitute a quadratic form which is non-negative unit is only in the limit y=0 without chemical reaction that the

der the conditions thaB?—ay<0 with «>0 and y>0.
With the diffusion coefficien{46) and the reaction raté0),
we can check that

= 77

o (77)
da

Y=3 (4n pon;) > 0, (78)
v p

because of the consistency conditi®@®). Next, the condi-
tion 82— ay<O0 is given by

2 2
§2+2[1—2<;—1) ]§+1<0, (79
in terms of the density ratio
g="2 (80
Pa
and the parameter
ponr 4KD
= = —F. 81
2n  3p? ®1)

The rootsé, of Eq. (79) satisfy&,=1/&.. If £,= ¢, the en-
tropy production is thus non-negative in the domain

&pa= ps = &-pa. (82
It turns out that the sum of the roots
2 2
L +E=2 2(;—1) -1 (83

is always positive in the interval<©y<% where the condi-
tion of consistency22) is verified.(The sumé, +§_ is nega-
tive only in the interval 4-22=1.1715..<y<4+2y2

domain of non-negativity coincides with the quadrdpj
=0,p5=0). In the presence of the chemical reaction, the
situation is unsatisfactory because the scheme is not consis-
tent with the second law of thermodynamics even if the do-
main of negative entropy production is small and only con-
cerns color densities that are very far from the
thermodynamic equilibrium. If the reaction-diffusion equa-
tions (53) and (54) had no cross-diffusion terms, this prob-
lem would not happen and the standard entropy would have
a non-negative production. However, the cross-diffusion
terms are well established by the kinetic theory in Sec. IlI
and by previous work19-23. Moreover, theH theorem
proved in Sec. Il A shows that there is no problem with
entropy production at the level of kinetic theory. This sug-
gests that the phenomenological entr@fy) has shortcom-
ings and that a better approximation should be obtained from
the full entropy(12) of kinetic theory.

B. Entropy with gradients

To cure the problem reported above, we thus choose to
expand the entropyl2) of kinetic theory to include terms
with the gradients of the densities. For this purpose, we sub-
stitute the expansion88) and(39) of the distribution func-
tions in the entropy12) and we truncate up to the terms that
are quadratic in the currents to get

0 0 2
P_+pB|nP__£2<£ Ja
Pa PB Pan P8
where the particle currents are given in terms of the density
gradients according to Eq860) and (61). Accordingly, the
entropy(87) is quadratic in the density gradients.

Here again, we calculate the time variation of the entropy
density s by using the coupled reaction-diffusion equations
(58 and(59). The balance equation for entropy is here also

s=paln

) , (87)

=6.8284... outside the domain of consisten&inceé, and  given by
¢ have the same sign, they both are positive in the consis-

tency domain @<y <3, which means that there exists a do- gs=-V -Js+tos, (88)
main of the quadranip,=0,pg=0) where the entropy pro- With an entropy current similar to EG69),

duction (73) can be negative. This domain is composed of . .

& pa>pg=0 andé. pg> ppr=0. Another way of saying it is CR N N O

that the domain(82) where the entropy production is non- Js=Jaln epn *+Jgln epe +0@3), (89)

negative is smaller than the quadrdpt=0,p5=0) of all
the possible densitiep, and pg. The domain of non-
negativity extends to

up to the term€(3) of third order in the gradients. However,
the entropy production now takes the more complicated form

1441.9.. pp= pg = 0.000 69348 ..p, fory=0.1, o = Vpa - %B 2 -
os=klpa=pp)n —=Jp-— - Jp- (JA
(84) P8 PA PB
to S O PR R 2 32
~Je)- (—A - —B> - —2<pA—pB)<—§ -~ | +0(4),
321.99. PA = pB = 0.0031056. -PA for y= 0. 2 PA  PB v Pan  PB
(85) (90)
and to where O(4) denotes terms of fourth order in the gradients.
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Replacing the gradients by the currents with Eq4) and p° 0 Kaa = - -
(72), we obtain s=paln —+pgin —- 7AA(VPA)2 —KagVpa-Vps
Pa PB
pa 1(J J2 4k - = Kgg, =
0= Kpa=pe)in =5+ = (—A + 5= Jp) - —2(Vpe)?, (98)
pg D\pa ps/ 3v 2
a J K Bz 2 with the coefficients
-(—A— —B> - —2<pA—pB><—’;— 2) +0(4), (9D
PA  PB % PA  PB (D + D(r))Z (D- D(r))Z
or equivalently Kan= 202p, " 20%pg (99)
p -, - - -,
7s= K(pa= pe)in = + adi + 235 - Jg + 135+ O(4), (D+D")2 (D-D")2
Pe B8, > 2 (100
(92) 2v°pg 2v°pa
with the coefficients (D +D")(D - D“))( 1 1 )
.- = (102
o= i(l_}_%_}_Kz_pB)’ (93) 21)2 PA PB
pa\D  3v° vpa . . .
which are independent of the velocity
2% (1 1 The gradient terms are of the same kind as those appear-
B=- 3—(— + —) (94) ing in the Ginzburg-Landau free energy. Here, they appear in
v \PA PB the entropy with the opposite sign in agreement with the
required thermodynamic stability of the equilibrium state
:i(lJrLJrﬂ) (95)  [28,29. Indeed, the entropy must be maximal in a stable
s\D  3v? vPpg equilibrium state. This is the case since the quadratic form in

Eq. (87) or (98) is negative. Accordingly, the entropy reaches
a maximum at the equilibrium state where the gradients and
the currents vanish.

The gradient terms are responsible for statistical correla-
(y+2)?%+4 tions between the particles. Indeed, the entropy deri88y

y(12 -y) §+1>0, (98)  can be used to define the entropy functional

The coefficientsx and y are always positive, while the con-
dition B?—ay<0 of non-negativity of the quadratic form is
here given by

£+2

with the ratio ¢ defined by Eq.(80) and the parameter N

0<y<3 by Eq. (81). The opposite inequality is obtained S[PA’PB]szdr’ (102)
compared to Eq(79) because the dependence on the rétio

is here more complicated but still simple enough to lead tcand the probability distribution for statistical average given
the quadratic equatiof96). In the physical domain €y by the functional integrals

<§, the rootsé, andé_=1/¢, of Eq. (96) are real and nega-

tive because
f DppaDpgO exp(1/kg)S pas pal}

§+ + g -— M <0 (97) <O>eq: (103)

y(12-y) f DpaDps expl(1kg)Spa,pel}
Accordingly, Eq.(96) holds for anyé>0 where £=pg/pp.

As a consequence, the quadratic part of the entropy produgor an observable. This allows us to calculate the correla-
tion (92) is non-negative in the quadrant of all the physically tion functions of the particle densities at the thermodynamic

allowed densities wherg,=0 andpg=0. If the gradients of  equilibrium. We consider the correlation functions of the
densities are small enough so that the corrections of fourt@ensities(32) and (33):

order in Eq.(92) are negligible, the whole entropy produc-

tion (92) is also non-negative. Cri() = (0o (N p1(0))eq= ()2 (104
We have thus proved that the inclusion of the gradient

terms in the entropy avoids the aforementioned problem and

guarantees that the entropy production remains non-negative C-—(F) = {p-(Np-(0))eq = {p- >GQ' (109

for all the values of the color densities if the gradients are

sufficiently small. C.(nN= <p+(F)p—(0)>eq_ <p+>eq<p—>eqa (106
C. Interpretation of the gradient terms in the entropy Where<p+>eq:peq:(2/e)l)0 and <P—>eq: 0. Partial differential

The entropy density given by E¢B7) can be expressed as equations can be obtained for these correlation functions by
follows in terms of the gradients of the particle densities bythe variational principlesS=0 based on the entropy func-
using Eqs(60) and (61): tional (98) evaluated around the thermodynamic equilibrium
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(P+_Peo>2+PE Kiteq o K- eq o
- =V p)? - ——HVp.)2.
2600 > p+) > (Vp-)
(107)

S= Seq—

The coefficients are given bg,,=peq and

1 2D?

K++,eq= Z(KAA+ Kes + ZKAB)eqz vzp ) (109
eq
1 2D"?
K- eq= Z(KAA+ Kgg— 2Kag)eq= —vzp , (109
eq
1
Ki-eq™ Z(KAA_ Kgpleq=0. (110

We notice that the vanishing of the coeffici€tif0) implies
that there is no cross term in the gradientp.ofn Eq. (107).

The fluctuations described by EG.03) are Gaussian around

the equilibrium since the entropy densiti07) is quadratic.

As a consequence, the correlation functions obey the equ

tions
, 1
\% — C..(N=0, (112
, 1
Vo= 2 C_(N=0 (112
for F+ 0 and with the correlation lengths
| 3\"5
€= VPeK++,eq= @1 (113
€= VpeK_— oq= __%2 (114)
- = VPed—-eq™ 16a(n - pon,/2)’
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spin one-half bounces among randomly distributed disk
scatterers. Some of these disks are catalytic in the sense that
the reactionA=B occurs with a given probability, upon
collision with these catalytic disks. In the case of a particle
with a spin, the catalytic disks correspond to impurities flip-
ping the spin. Under dilute-gas conditions, the time evolution
of the distribution functions of finding the particle with a
given color or spin at some positiohwith some velocitys

are ruled by two coupled Boltzmann-Lorentz kinetic equa-
tions which satisfy amd theorem. Théd quantity defines the
entropy at the kinetic level of description.

The time evolution separates into a diffusion sector for the
total distribution function and a reaction sector for the differ-
ence of the distribution functions of the colors. The spectrum
of eigenmodes of both sectors can be constructed in detail.
The diffusive(reactive modes are the slowest modes among
all the modes of the diffusiofireaction sector, which pro-
vides us with the diffusion coefficient of the diffusive mode,
as well as the reaction rate constant and the reactive diffusion
coefficient of the reactive mode. This analysis and the
knowledge of these coefficients allow us to obtain the mac-
roscopic reaction-diffusion equations. These equations
present cross-diffusion terms which are induced by the reac-
tion if the reaction probabilityp, is not vanishing, as in pre-
vious studies of the reactive periodic Lorentz gas and multi-
baker model§19-23. In the reactive random Lorentz gas,
our analysis shows that a transition happens in the reaction
sector between a regime at low concentrations of catalytic
disks and reaction probabilities and another one at high con-
centrations and probabilities.

Using the derivation of the macroscopic reaction-
diffusion equations, we have studied the problem of the en-
tropy production on the basis of the entropy defined in ki-
netic theory in terms of the distribution functions and the
associatedH theorem. The entropy of kinetic theory can be
expanded in powers of the gradients of the densities of both
colors A and B. At the lowest order of this expansion, the
entropy density is simply a function of the color densities

and C,_(r)=0. These correlation lengths are of the order ofthemselves and coincides with the expression of the phenom-
the mean free path of the particles between the scatterers efological nonequilibrium thermodynami4,25. The bal-

radiusa and densityn. The correlation functions are given by ance equation of this entropy without gradient can be derived
Bessel functions of zeroth order and they behave at lonfrom the macroscopic reaction-diffusion equations. Because

distance as

Cia() ~ # ex%“ L>, (115
\r Lo

with r=y\x?+y%. The difference between these correlation
functions characterizes the statistical correlations betwe
the densities of particle& andB. The fact that the correla-
tion lengths take different valueg,. #¢_, means that the

statistical correlations between the spedeandB are non-

trivial. A definition of entropy consistent with the second law
of thermodynamics should thus take into account the effect
of such statistical correlations in the phenomenon of cros

diffusion induced by the chemical reaction.

V. CONCLUSIONS

of the cross-diffusion effects induced by the reaction, the
resulting entropy production may become negative for ex-
treme values of the ratio between the color densities. This is
certainly a problem of principle for the phenomenological

approach. In order to solve this problem, we have considered
the entropy density at the next order of the expansion in the

eSradients of color densities. At this next order, the entropy

density contains terms that are quadratic in the gradients in
addition to the contribution of the phenomenological entropy.
The balance equation of this entropy with gradients turns out
to have an entropy production that is non-negative for all the
Zolor densities and for small enough gradients of color den-
gities, in consistency with the second law of thermodynam-
ics.

The entropy density with gradients is interpreted as the
entropic version of the Ginzburg-Landau free energy. The

In this paper, we have studied a reactive random Lorentaddition of gradient terms is shown to be responsible for

gas in which a point particle carrying a coléror B (or a

statistical correlations in the densities of the colArandB
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over spatial scales of the order of the mean free path of ththe inert species which do not participate in the reaction. We
particle. The consideration of these spatial correlations apthink that the present work clearly shows that this chemically
pears to be necessary to get a non-negative entropy produierduced cross diffusion is compatible with kinetic theory and
tion in the presence of chemically induced cross diffusionthe second law of thermodynamics and should be an experi-
The inclusion of these gradients in the entropy is justified bymentally observable effect.

the kinetic theory and by the consistency so obtained with
the second law of thermodynamics. Such an entropy func-
tional with gradients is also justifed by analogy with the
Ginzburg-Landau free enerd28,29. The inclusion of gra- The authors thank Professor G. Nicolis for support and
dients in the entropy requires a departure from the classicancouragement in this research. L.M. is supported through
Onsager-Prigogine nonequilibrium thermodynanmi4,25.  the European Community Contract No. HPMF-CT-2002-
This classical nonequilibrium thermodynamics neglects thé1511. This research is financially supported by the “Com-
possible interplay between the diffusion and the reactionmunauté francaise de Belgiqud"Actions de Recherche
such as the cross diffusion induced by the chemical reactiorConcertées,” Contract No. 04/09-31fhe National Fund for
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