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We report the study of a random Lorentz gas with a reaction of isomerizationA
B between two colors of
moving particles elastically bouncing on hard disks. The reaction occurs when the moving particles collide on
catalytic disks, which constitute a fraction of all the disks. Under dilute-gas conditions, the reaction-diffusion
process is ruled by two coupled Boltzmann-Lorentz equations for the distribution functions of the colors. The
macroscopic reaction-diffusion equations with cross-diffusion terms induced by the chemical reaction are
derived from the kinetic equations. We use anH theorem of the kinetic theory in order to derive a macroscopic
entropy depending on the gradients of color densities and which has a non-negative entropy production in
agreement with the second law of thermodynamics.
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I. INTRODUCTION

During recent decades, irreversibility and transport prop-
erties have been intensively studied in low-dimensional dy-
namical systemsf1–16g. It has been shown that the macro-
scopic transport coefficients can be related to the
characteristic quantities of the microscopic dynamicsf4g.
Moreover, results have also been obtained for the entropy
balance in dynamical systems sustaining transport processes
of diffusion f4,11–14g, electric conductionf6g, cross effects
f8,9g, and shear viscosityf10g. For these processes, the irre-
versible entropy production of nonequilibrium thermody-
namics could be derived from the underlying microscopic
dynamics.

In addition to transport, reaction processes have also been
investigated from the viewpoint of dynamical systems
theory. Reaction-diffusion processes play a crucial role in
physicochemical systems far from thermodynamic equilib-
rium and they have been much studied at the macroscopic
level of description on the basis of phenomenological non-
equilibrium thermodynamicsf17g.

Recently, several microscopic models of reaction-
diffusion processes have been introduced and analyzed in
order to understand the foundations of the phenomenological
assumptions. The simplest reactions are isomerizations
A
B where the two speciesA andB may be considered as
colors or spins carried by the moving particles and changing
or flipping upon reactive eventsf18g. Models of reaction-
diffusion processes can be obtained by coupling the isomer-
ization to the deterministic diffusion of multibaker or Lor-
entz gas dynamical systemsf19–23g. In the early version of
Refs.f19,20g, the isomerizationA
B was supposed to hap-
pen with unit probability upon the passage of the particle to
a catalytic site where the reaction occurs. In Ref.f21g, a
spatially periodic reactive Lorentz gas was introduced in
which the isomerizationA
B occurs with a probability
0øp0ø1 when the particle collides on catalytic disks. The
catalytic disks are few among the disks which compose the
Lorentz gas. Spatially periodic Lorentz gas and multibaker
models with reactionA
B have been studied in detail and
their diffusive and reactive modes were constructed together

with their dispersion relationsf21–23g. In this way, the mac-
roscopic reaction-diffusion equations could be derived in a
systematic way from the underlying dynamics. The analysis
revealed the existence of cross-diffusion effects induced by
the reaction. Such cross diffusion is typically overlooked in
the phenomenological approachf24,25g.

The purpose of the present paper is to address the problem
of entropy production in such reaction-diffusion systems
with cross diffusion. As shown here below, it turns out that
the entropy production of the standard phenomenological en-
tropy may be negative because of the cross-diffusion effects.
Although this problem only happens for extreme particle
densities it nevertheless sheds some doubts on the phenom-
enological assumptions. In order to clarify this issue, we here
consider arandomLorentz gas with a fraction of catalytic
disks where the isomerizationA
B occurs with a given
probability p0. The colorA or B carried by the moving par-
ticle may correspond to the spin of the particle, in which case
the catalytic disks model some spin-flipping impurities in the
system. For dilute Lorentz gases, we can use kinetic theory
and linear Boltzmann-Lorentz equationsf26,27g. Thanks to
such master equations, we can derive anH theorem which
allows us to obtain an expression for the entropy. We prove
that the corresponding entropy production is non-negative
with respect to the time evolution induced by the macro-
scopic reaction-diffusion equations.

The plan of the paper is the following. The kinetic equa-
tions of the reactive Lorentz gas are introduced in Sec. II
where we prove theH theorem. The macroscopic reaction-
diffusion equations are derived in Sec. III. The entropy bal-
ance is obtained and discussed in Sec. IV. Conclusions are
drawn in Sec. V.

II. THE REACTIVE LORENTZ GAS

In the random Lorentz gas, fixed circular scatterers corre-
spond to heavy particles and moving point particles to light
ones. The system is defined by the density of the scatterersn,
their radius a, and the velocity of the light particlesvW
=vscosw ,sinwd, the system being two dimensional. Because
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the magnitude of the velocities is fixed, the velocity vector
can be characterized solely by the anglew. Here, we consider
a random distribution of the disks with low densityn!a−2.

The reactive Lorentz gasf21g consists of two different
types of light particlesA and B that have a free flight be-
tween the collisions. Some of the fixed scatterers act as cata-
lysts, i.e., if anA particle collides with such a scatterer it
becomes aB with the probabilityp0, and vice versa. The
catalysts have a densitynr. The reaction scheme is

A + disk
 A + disk, s1d

B + disk
 B + disk, s2d

A + catalyst
 B + catalyst, with probabilityp0. s3d

The colors can be considered as the two components of spin
one-half carried by the moving particles. The evolution of
the system can be characterized by the two distribution func-
tions of the two componentsfAsrW ,vWd and fBsrW ,vWd. The inte-
gral over the velocities of these functions gives the number
density at pointrW of each componentA or B. Having in mind
that the time evolution of the distribution functionfA sfBd is
also influenced by the presence of the other componentB sAd
which may collide with a catalyst, we obtain the system of
equations

]t fA + vW ·¹W fA =
avsn − p0nrd

2
E

−p

+p

dw8Usin
w − w8

2
UffAsrW,w8d

− fAsrW,wdg +
avp0nr

2
E

−p

+p

dw8Usin
w − w8

2
U

3ffBsrW,w8d − fAsrW,wdg, s4d

]t fB + vW ·¹W fB =
avsn − p0nrd

2
E

−p

+p

dw8Usin
w − w8

2
UffBsrW,w8d

− fBsrW,wdg +
avp0nr

2
E

−p

+p

dw8Usin
w − w8

2
U

3ffAsrW,w8d − fBsrW,wdg. s5d

One can observe that the total system of moving particles
A andB follows a diffusive process that can be characterized
by the the sum of the distribution functions,

f ; fA + fB. s6d

The time evolution off is given by a linear Boltzmann equa-
tion, also known as the Boltzmann-Lorentz equationf26,27g:

]t f + vW ·¹W f =
avn

2
E

−p

+p

dw8Usin
w − w8

2
UffsrW,w8d − fsrW,wdg.

s7d

This equation rules the so-calleddiffusion sector. In order to
have the time evolution of both distribution functions, we
need a further equation in addition to Eq.s7d.

If we introduce the quantity

g ; fA − fB, s8d

and take the difference of Eqs.s4d and s5d, we obtain the
equation

]tg + vW ·¹W g =
avsn − 2p0nrd

2
E

−p

+p

dw8Usin
w − w8

2
UfgsrW,w8d

− gsrW,wdg − 4avp0nrgsrW,wd, s9d

which rules thereaction sector. One can notice that the last
equation describes a decay in time of the functiong that can
be separated from the rest of the solution,

gsrW,w,td = e−4avp0nrthsrW,wd. s10d

The equation forh reads

]th + vW ·¹W h =
avsn − 2p0nrd

2
E

−p

+p

dw8Usin
w − w8

2
U

3fhsrW,w8d − hsrW,wdg, s11d

which has the same form as Eq.s7d.

A. H theorem

The Boltzmann entropy of the system of Eqs.s4d ands5d
is given by the sum of the entropies of the two components:

s=E dwS fA ln
f0

fA
+ fB ln

f0

fB
D , s12d

where Boltzmann’s constant is taken equal to unity,kB=1.
Inserting into the integral on the right-hand side the time

evolution Eqs.s4d and s5d, we get for the variation of the
entropy

]ts=E dwHln
f0

efA
f− vW ·¹W fA + CsfA, fBdg

+ ln
f0

efB
f− vW ·¹W fB + CsfB, fAdgJ , s13d

where the collision integralCsfA, fBd has the form

CsfA, fBd =E
−p

+p

dw8Usin
w − w8

2
UFavsn − p0nrd

2
sfA8 − fAd

+
avp0nr

2
sfB8 − fAdG , s14d

with the notations

fA = fAsrW,w,td, s15d

fA8 = fAsrW,w8,td, s16d

fB = fBsrW,w,td, s17d

fB8 = fBsrW,w8,td. s18d

This relation can be written in the form of a balance
equation
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]ts= − ¹W ·JWs + ss, s19d

where

JWs =E dw vWS fA ln
f0

fA
+ fB ln

f0

fB
D s20d

is the entropy current and

ss =
av
4
E dw dw8Usin

w − w8

2
UHsn − p0nrdFsfA8 − fAdln

fA8

fA

+ sfB8 − fBdln
fB8

fB
G + p0nrFsfB8 − fAdln

fB8

fA

+ sfA8 − fBdln
fA8

fB
GJ

ù 0 s21d

is the entropy productionf24g. One can see in this general
form of the entropy production that it is non-negative under
the consistency condition that

0 ø p0nr ø n. s22d

Therefore, the second law of thermodynamics is satisfied for
the entropys12d during the reaction-diffusion process de-
scribed by the Boltzmann-Lorentz equationss4d and s5d.

III. DERIVATION OF THE MACROSCOPIC
REACTION-DIFFUSION EQUATIONS

In order to understand the time evolution of the system
and, in particular, of the macroscopic densities of particlesA
and B, we have to solve the coupled Boltzmann-Lorentz
equationss4d and s5d. Since these equations are linear, they
yield an eigenvalue problem and their solutions can be de-
composed in terms of eigenfunctions. The time evolution can
then be determined by the spectrum of the associated eigen-
values.

A convenient way to find the solution of Eqs.s7d ands11d

]tX + vW ·¹W X =
c

2
E

−p

+p

dw8Usin
w − w8

2
UfXsrW,w8d − XsrW,wdg

s23d

is by writing the distribution functionsX= f or h as a Fourier
series in the velocity anglew,

XsrW,w,td = o
l=−`

+`

XlsrW,tdeilw. s24d

As a consequence of Eq.s7d or s11d, the Fourier components
Xl satisfy the following coupled differential equations:

]tXl + v
]x − i]y

2
Xl−1 + v

]x + i]y

2
Xl+1 =

8l2c

1 − 4l2
Xl s25d

with

c = avn for X = f s26d

and

c = avsn − 2p0nrd for X = h. s27d

The distribution functionX being a real function, the Fourier
coefficients with negative index are the complex conjugates
of their positive index counterparts:X−l =Xl

* for any l. If we
take solutions in the form

XlsrW,td = Ul exps− gtdexpsiqW · rWd, s28d

we obtain the eigenvalue equations

− gUl + iv
qx − iqy

2
Ul−1 + iv

qx + iqy

2
Ul+1 =

8l2c

1 − 4l2
Ul ,

s29d

for l PZ. Expanding in powers of the wave numberqW, the
decay rates are given by

g =
8l2c

4l2 − 1
−

3s4l2 − 1dv2

16c
q2 + Osq4d, s30d

with l =0,1,2, . . . andq=Îqx
2+qy

2. Figure 1 shows the spec-
trum obtained by solving numerically the eigenvalue equa-
tions s29d for c.0. We observe that the branch forl =0 has
a convexity which is opposite to the one of the other
branches forl =1,2, . . ..Moreover, all the branches terminate
on the lineg=2c, which fixes the maximum value of the
wave number for each branch. This feature prevents the ei-
genvalues from becoming of opposite sign, hence avoiding
instability in agreement with the stability provided by theH
theorem. For the diffusion sector, the constantc is always
positive. However, the sign of the constantc may change in
the reaction sector and we must treat separately the cases
c.0 andcø0.

A. The case 0,p0nr ,n /2

In this case, we have thatc.0 in both the diffusion and
reaction sectors.

The previous spectral analysis shows that, after a relax-
ation time of the order ofsavnd−1, the dynamics is dominated
by the first Fourier componentsX0, X+1, andX−1:

X . X0 + X+1e
+iw + X−1e

−iw. s31d

FIG. 1. The dimensionless eigenvalues −g /c of Eq. s29d versus
the dimensionless wave numbervq/c with q=Îqx

2+qy
2.
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In order to obtain a macroscopic description, we introduce
the densities

r+ ; rA + rB =E
−p

+p

fsrW,wddw = 2pf0, s32d

r− ; rA − rB =E
−p

+p

gsrW,wddw = 2pg0 s33d

and the currents

JW+ ; JWA + JWB =E
−p

+p

vW fsrW,wddw, s34d

JW− ; JWA − JWB =E
−p

+p

vWgsrW,wddw. s35d

We observe that the zeroth-order Fourier componentf0 of the
distribution functionf in the expansions24d is related to the
total densityr+=rA+rB according to Eq.s32d. Similarly, Eq.
s33d shows that the zeroth-order componentg0 of the distri-
bution function g gives the difference of densitiesr−=rA
−rB. On the other hand, the first-order Fourier components
X+1 andX−1 are related to the currents. As a consequence, we
obtain the distribution functionsf andg in terms of the cor-
responding densities and currents

f .
1

2p
Sr+ +

2

v2vW ·JW+D , s36d

g .
1

2p
Sr− +

2

v2vW ·JW−D . s37d

The distribution functions for the speciesA and B are thus
given by

fA .
1

2p
SrA +

2

v2vW ·JWAD , s38d

fB .
1

2p
SrB +

2

v2vW ·JWBD . s39d

Equationss25d for l =0 and ±1 then lead to the coupled
equations

]tr+ = − ¹W ·JW+, s40d

]tJW+ = −
8av
3

nJW+ −
v2

2
¹W r+, s41d

and

]tr− = − ¹W ·JW− − 4avp0nrr−, s42d

]tJW− = −
8av
3
Sn −

p0nr

2
DJW− −

v2

2
¹W r−. s43d

We notice that the currents relax on a fast time scale so that
we can assume that they quickly adjust to their values in a
quasistationary state as

JW+ = − D¹W r+ for t @
3

8avn
, s44d

JW− = − Dsrd¹W r− for t @
3

8avsn − p0nr/2d
, s45d

with the diffusion coefficient

D =
3v

16an
, s46d

and the reactive diffusion coefficient

Dsrd =
3v

16asn − p0nr/2d
. s47d

Equations44d is the expression of Fick’s law for the particles
while Eq. s45d is its reactive analog. Substituting Eqs.s44d
and s45d into Eqs.s40d and s42d for the densities, we obtain
the diffusion equation

]tr+ = D¹2r+, s48d

as well as the reaction-diffusion equation

]tr− = Dsrd¹2r− − 2kr−, s49d

with the reaction rate constant

k = 2avp0nr . s50d

This result shows that the reaction rate constant is the prod-
uct of the speedv with the cross section 2a of the disks,
multiplied by the densitynr of the catalytic scatterers and
weighted by the probability of reactionp0. The two equations
s48d and s49d show the existence of two slow modes in the
system corresponding to the decay rates30d with l =0,
namely, thediffusive modeof the dispersion relation,

G = Dq2 + Osq4d, diffusive mode, s51d

and thereactive modeof the dispersion relation,

G = 2k + Dsrdq2 + Osq4d, reactive mode. s52d

The equations of motions48d and s49d determines the
time evolution of the densitiesrA=sr++r−d /2 and rB=sr+

−r−d /2 according to the coupled reaction-diffusion equations

]trA = DAA¹2rA + DAB¹2rB − ksrA − rBd, s53d

]trB = DBA¹2rA + DBB¹2rB + ksrA − rBd, s54d

where the transport coefficients can be identified as

DAA = DBB =
D + Dsrd

2
, s55d

DAB = DBA =
D − Dsrd

2
. s56d

The important conclusion is here that there appears a phe-
nomenon of cross diffusion which is induced by the reaction.
This phenomenon has been previously found and analyzed in
reaction-diffusion models based on the periodic Lorentz gas
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and the multibaker map in Refs.f19–23g where the coupled
reaction-diffusion equationss53d and s54d have been ob-
tained by other methods. In the random Lorentz gas, we can
use the kinetic theory in order to derive these macroscopic
equations and the value of the cross-diffusion coefficients

DAB = DBA = −
3vp0nr

64ansn − p0nr/2d
. s57d

We notice that these coefficients vanish with the reaction
probabilityp0 and the density of catalystsnr. Accordingly, in
the absence of reaction, the cross-diffusion terms vanish with
the reaction term and we recover two uncoupled diffusion
equations forA andB particles.

The coupled reaction-diffusion equationss53d and s54d
can be rewritten as

]trA = − ¹W ·JWA − ksrA − rBd, s58d

]trB = − ¹W ·JWB + ksrA − rBd, s59d

in terms of the currents

JWA = −
D + Dsrd

2
¹W rA −

D − Dsrd

2
¹W rB, s60d

JWB = −
D + Dsrd

2
¹W rB −

D − Dsrd

2
¹W rA, s61d

which shows that the current of one species is influenced by
the gradient of the other species because of the chemical
reaction.

In addition to the diffusive and reactive slowest modes,
we also find faster modes often referred to as kinetic modes.
All these modes exist in both the diffusion sector ruled by
Eq. s23d for X= f and in the reaction sector ruled by Eq.s23d
for X=h. All these modes are characterized by dispersion
relations which form a whole spectrum. Figure 2 depicts the
whole spectra of the diffusion and reaction sectors in the case
0,p0nr ,n/2.

B. The casep0nr =n /2

In this case, we remark that Eq.s23d for X=h has a van-
ishing coefficientc=0 in the reaction sector so that the equa-
tion for X=h is purely advective,

]th + vW ·¹W h = 0. s62d

Its solutions are given byh=hsrW−vWtd, and g=e−2kthsrW−vWtd
obeys

]tg + vW ·¹W g = − 2kg. s63d

In this case, there is no reactive diffusion coefficient that
characterizes the reactive process.

C. The casen /2,p0nr ,n

As we noticed before,p0nr cannot exceed the valuen for
consistency. In this case, we have that Eq.s23d for X= f still
has a coefficientc.0 in the diffusion sector but Eq.s23d for
X=h has a negative coefficientc,0 in the reaction sector.
Accordingly, the spectrum shown in Fig. 1 is upside down in
the reaction sector and the slowest reactive mode is no longer
the same as before.

Here, we must consider the decay rates30d with l =1. The
dispersion relation of the reactive mode is now given by

G = 2k8 + Dsrd8q2, s64d

with the new reaction constant

k8 =
2av
3

s2n − p0nrd, s65d

and the new reactive diffusion coefficient

Dsrd8 =
9v

16as2p0nr − nd
. s66d

The reaction-diffusion equationss53d and s54d still hold in
this case. The coefficientss55d ands56d are still given by the
diffusion coefficientD of Eq. s46d but the reaction-diffusion
coefficient Dsrd should now be replaced by its new value
s66d. Furthermore, the reaction ratek should be replaced by
the new values65d.

Figure 3 depicts the spectra in the diffusion and reaction
sectors in the casen/2,p0nr ,n. With respect to Fig. 2, the
spectrum is unchanged in the diffusion sector but upside
down in the reaction sector.

Therefore, a transition occurs at the critical valuep0nr
=n/2 and a different regime exists for high concentrationsnr
of catalysts and high values of the reaction probabilityp0. In
this new regime, the frequency of reactive events becomes of
the same order of magnitude as the collision frequency so
that the isomerizationsA
B are nearly as frequent as the
elastic collisions. This deeply affects the way the reaction
proceeds and, thus, modifies both the reaction rate and the
reactive diffusion coefficient. We can no longer speak of
diffusion-controlled reaction as in the case 0,p0nr ,n/2 of
Sec. III A where diffusive paths composed of many succes-
sive elastic collisions on inert disks separate the consecutive
encounters with the catalytic disks. In contrast, in the case

FIG. 2. Eigenvalues −G versus the wave numberq=Îqx
2+qy

2 in
the regime 0,p0nr ,n/2 wherec.0: spectrum ofsad the diffusion
sector;sbd the reaction sector. The parameter values arev=1, an
=1, andp0nr =0.125n. The spectra are similar up to rescalings of
the axesfand a vertical translation in the reaction sectorsbdg for the
other values of the parameters as long as 0,p0nr ,n/2.
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n/2,p0nr ,n of the present subsection, the catalytic disks
are more numerous than the inert disks so that the moving
particle can very often have a ballistic flight between two
consecutive encounters with catalytic disks. As a conse-
quence, the reaction is controlled by the local dynamics be-
tween next-neighboring disks. This dynamics is supposed to
be described by the eigenvalues of the Boltzmann-Lorentz
equation which have the largest rates and correspond to the
shortest time scales. These eigenvalues are found at the bot-
tom of the spectrum of the diffusion sector in Fig. 3sad. Since
the dynamics on short time scales controls the reaction, we
thus find these eigenvalues at the top of the spectrum of the
reaction sector in Fig. 3sbd. This explains that the spectrum
in Fig. 3sbd looks upside down with respect to the one in Fig.
3sad. The preceding reasoning also suggests that corrections
beyond the approximation given by the coupled Boltzmann-
Lorentz equationss4d and s5d could become important as
p0nr →n.

In the following, we shall focus on the case 0,p0nr
,n/2 where the catalysts are dilute enough.

IV. THE ENTROPY BALANCE

In this section, we derive the equation for the balance of
entropy from theH theorem in two approximations for the
entropy density. In kinetic theory, we have a well-defined
expression for the entropy which guarantees that the entropy
production is always non-negative. However, at the level of
the macroscopic description given by the reaction-diffusion
equationss53d and s54d, the entropy is given as an approxi-
mation of the expressions12d of kinetic theory and we must
verify the domain of validity where the corresponding en-
tropy production is non-negative.

The first approximation we consider is based on the stan-
dard phenomenological entropy defined in irreversible ther-
modynamics of reaction processesf24,25g. We show that the
corresponding entropy production is non-negative in a broad
range of values for the densitiesrA and rB including the
thermodynamic equilibrium state but there is a small domain
where the entropy production corresponding to this approxi-
mation fails to remain non-negative.

Therefore, we consider a second approximation which in-
cludes extra terms involving the gradient of the densities. We

show that the corresponding entropy production always re-
mains non-negative.

A. Entropy without gradients

Supposing that the system is sufficiently dilute, the phe-
nomenological irreversible thermodynamics supposes that
the entropy density has the following expression:

s= rA ln
r0

rA
+ rB ln

r0

rB
. s67d

This entropy density is obtained from the entropys12d of
kinetic theory by using the expansionss38d and s39d of the
distribution functions and by keeping the terms in the densi-
ties themselves and discarding terms in the gradients. The
reference density is thus given byr0=2pf0, which amounts
to supposing equality of the masses of the particlesA andB.

The variation of the entropy densitys in time is given by
the balance equation

]ts= − ¹W ·JWs + ss, s68d

here calculated by using the coupled reaction-diffusion equa-
tions s58d and s59d. The entropy current density is obtained
in terms of the currentss60d ands61d of particlesA andB as

JWs = JWA ln
r0

erA
+ JWB ln

r0

erB
, s69d

while the entropy production takes the form

ss = ksrA − rBdln
rA

rB
− JWA ·

¹W rA

rA
− JWB ·

¹W rB

rB
. s70d

In order to obtain an expression that is quadratic in the cur-
rents, we invert Eqs.s60d ands61d and obtain the gradients in
terms of the currents as

¹W rA = −
JWA

D
+

2k

3v2sJWA − JWBd, s71d

¹W rB = −
JWB

D
−

2k

3v2sJWA − JWBd. s72d

Substituting in the entropy productions70d, we get

ss = ksrA − rBdln
rA

rB
+ aJWA

2 + 2bJWA ·JWB + gJWB
2 , s73d

with the coefficients

a =
1

rA
S 1

D
−

2k

3v2D , s74d

b =
k

3v2S 1

rA
+

1

rB
D , s75d

g =
1

rB
S 1

D
−

2k

3v2D . s76d

FIG. 3. Eigenvalues −G versus the wave numberq=Îqx
2+qy

2 in
the regimen/2,p0nr ,n wherec.0: spectrum ofsad the diffusion
sector;sbd the reaction sector. The parameter values arev=1, an
=1, andp0nr =0.875n. The spectra are similar up to rescalings of
the axesfand a vertical translation in the reaction sectorsbdg for the
other values of the parameters as long asn/2,p0nr ,n.
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The first term in the entropy productions73d is always
non-negative becausesx−ydlnsx/ydù0 for all positive val-
ues of the real numbersx andy. On the other hand, the last
terms constitute a quadratic form which is non-negative un-
der the conditions thatb2−ag,0 with a.0 and g.0.
With the diffusion coefficients46d and the reaction rates50d,
we can check that

a =
4a

3vrA
s4n − p0nrd . 0, s77d

g =
4a

3vrB
s4n − p0nrd . 0, s78d

because of the consistency conditions22d. Next, the condi-
tion b2−ag,0 is given by

j2 + 2F1 − 2S2

y
− 1D2Gj + 1 , 0, s79d

in terms of the density ratio

j ;
rB

rA
s80d

and the parameter

y ;
p0nr

2n
=

4kD

3v2 . s81d

The rootsj± of Eq. s79d satisfyj+=1/j−. If j+ùj−, the en-
tropy production is thus non-negative in the domain

j+rA ù rB ù j−rA. s82d

It turns out that the sum of the roots

j+ + j− = 2F2S2

y
− 1D2

− 1G s83d

is always positive in the interval 0,y,
1
2 where the condi-

tion of consistencys22d is verified.sThe sumj++j− is nega-
tive only in the interval 4−2Î2=1.1715. . .,y,4+2Î2
=6.8284. . . outside the domain of consistency.d Sincej+ and
j− have the same sign, they both are positive in the consis-
tency domain 0,y,

1
2, which means that there exists a do-

main of the quadrantsrAù0,rBù0d where the entropy pro-
duction s73d can be negative. This domain is composed of
j− rA.rBù0 andj− rB.rAù0. Another way of saying it is
that the domains82d where the entropy production is non-
negative is smaller than the quadrantsrAù0,rBù0d of all
the possible densitiesrA and rB. The domain of non-
negativity extends to

1441.9 . . .rA ù rB ù 0.000 693 48 . . .rA for y = 0.1,

s84d

to

321.99 . . .rA ù rB ù 0.003 105 6 . . .rA for y = 0.2,

s85d

and to

33.970 . . .rA ù rB ù 0.029 437 . . .rA for y = 0.5.

s86d

It is only in the limit y=0 without chemical reaction that the
domain of non-negativity coincides with the quadrantsrA

ù0,rBù0d. In the presence of the chemical reaction, the
situation is unsatisfactory because the scheme is not consis-
tent with the second law of thermodynamics even if the do-
main of negative entropy production is small and only con-
cerns color densities that are very far from the
thermodynamic equilibrium. If the reaction-diffusion equa-
tions s53d and s54d had no cross-diffusion terms, this prob-
lem would not happen and the standard entropy would have
a non-negative production. However, the cross-diffusion
terms are well established by the kinetic theory in Sec. III
and by previous workf19–23g. Moreover, theH theorem
proved in Sec. II A shows that there is no problem with
entropy production at the level of kinetic theory. This sug-
gests that the phenomenological entropys67d has shortcom-
ings and that a better approximation should be obtained from
the full entropys12d of kinetic theory.

B. Entropy with gradients

To cure the problem reported above, we thus choose to
expand the entropys12d of kinetic theory to include terms
with the gradients of the densities. For this purpose, we sub-
stitute the expansionss38d and s39d of the distribution func-
tions in the entropys12d and we truncate up to the terms that
are quadratic in the currents to get

s= rA ln
r0

rA
+ rB ln

r0

rB
−

1

v2S JWA
2

rA
+

JWB
2

rB
D , s87d

where the particle currents are given in terms of the density
gradients according to Eqs.s60d and s61d. Accordingly, the
entropys87d is quadratic in the density gradients.

Here again, we calculate the time variation of the entropy
densitys by using the coupled reaction-diffusion equations
s58d and s59d. The balance equation for entropy is here also
given by

]ts= − ¹W ·JWs + ss, s88d

with an entropy current similar to Eq.s69d,

JWs = JWA ln
r0

erA
+ JWB ln

r0

erB
+ Os3d, s89d

up to the termsOs3d of third order in the gradients. However,
the entropy production now takes the more complicated form

ss = ksrA − rBdln
rA

rB
− JWA ·

¹W rA

rA
− JWB ·

¹W rB

rB
+

2k

v2 sJWA

− JWBd ·S JWA

rA
−

JWB

rB
D −

k

v2srA − rBdS JWA
2

rA
2 −

JWB
2

rB
2D + Os4d,

s90d

whereOs4d denotes terms of fourth order in the gradients.
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Replacing the gradients by the currents with Eqs.s71d and
s72d, we obtain

ss = ksrA − rBdln
rA

rB
+

1

D
S JWA

2

rA
+

JWB
2

rB
D +

4k

3v2sJWA − JWBd

·S JWA

rA
−

JWB

rB
D −

k

v2srA − rBdS JWA
2

rA
2 −

JWB
2

rB
2D + Os4d, s91d

or equivalently

ss = ksrA − rBdln
rA

rB
+ aJWA

2 + 2bJWA ·JWB + gJWB
2 + Os4d,

s92d

with the coefficients

a =
1

rA
S 1

D
+

k

3v2 +
krB

v2rA
D , s93d

b = −
2k

3v2S 1

rA
+

1

rB
D , s94d

g =
1

rB
S 1

D
+

k

3v2 +
krA

v2rB
D . s95d

The coefficientsa andg are always positive, while the con-
dition b2−ag,0 of non-negativity of the quadratic form is
here given by

j2 + 2
sy + 2d2 + 4

ys12 −yd
j + 1 . 0, s96d

with the ratio j defined by Eq.s80d and the parameter
0,y,

1
2 by Eq. s81d. The opposite inequality is obtained

compared to Eq.s79d because the dependence on the ratioj
is here more complicated but still simple enough to lead to
the quadratic equations96d. In the physical domain 0,y
,

1
2, the rootsj+ andj−=1/j+ of Eq. s96d are real and nega-

tive because

j+ + j− = − 2
sy + 2d2 + 4

ys12 −yd
, 0. s97d

Accordingly, Eq.s96d holds for anyj.0 wherej=rB/rA.
As a consequence, the quadratic part of the entropy produc-
tion s92d is non-negative in the quadrant of all the physically
allowed densities whererAù0 andrBù0. If the gradients of
densities are small enough so that the corrections of fourth
order in Eq.s92d are negligible, the whole entropy produc-
tion s92d is also non-negative.

We have thus proved that the inclusion of the gradient
terms in the entropy avoids the aforementioned problem and
guarantees that the entropy production remains non-negative
for all the values of the color densities if the gradients are
sufficiently small.

C. Interpretation of the gradient terms in the entropy

The entropy density given by Eq.s87d can be expressed as
follows in terms of the gradients of the particle densities by
using Eqs.s60d and s61d:

s= rA ln
r0

rA
+ rB ln

r0

rB
−

KAA

2
s¹W rAd2 − KAB¹W rA ·¹W rB

−
KBB

2
s¹W rBd2, s98d

with the coefficients

KAA =
sD + Dsrdd2

2v2rA
+

sD − Dsrdd2

2v2rB
, s99d

KBB =
sD + Dsrdd2

2v2rB
+

sD − Dsrdd2

2v2rA
, s100d

KAB =
sD + DsrddsD − Dsrdd

2v2 S 1

rA
+

1

rB
D , s101d

which are independent of the velocityv.
The gradient terms are of the same kind as those appear-

ing in the Ginzburg-Landau free energy. Here, they appear in
the entropy with the opposite sign in agreement with the
required thermodynamic stability of the equilibrium state
f28,29g. Indeed, the entropy must be maximal in a stable
equilibrium state. This is the case since the quadratic form in
Eq. s87d or s98d is negative. Accordingly, the entropy reaches
a maximum at the equilibrium state where the gradients and
the currents vanish.

The gradient terms are responsible for statistical correla-
tions between the particles. Indeed, the entropy densitys98d
can be used to define the entropy functional

SfrA,rBg =E s drW, s102d

and the probability distribution for statistical average given
by the functional integrals

kOleq=
E DrADrBO exphs1/kBdSfrA,rBgj

E DrADrB exphs1/kBdSfrA,rBgj
s103d

for an observableO. This allows us to calculate the correla-
tion functions of the particle densities at the thermodynamic
equilibrium. We consider the correlation functions of the
densitiess32d and s33d:

C++srWd ; kr+srWdr+s0dleq− kr+leq
2 , s104d

C−−srWd ; kr−srWdr−s0dleq− kr−leq
2 , s105d

C+−srWd ; kr+srWdr−s0dleq− kr+leqkr−leq, s106d

wherekr+leq=req=s2/edr0 and kr−leq=0. Partial differential
equations can be obtained for these correlation functions by
the variational principledS=0 based on the entropy func-
tional s98d evaluated around the thermodynamic equilibrium
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s. seq−
sr+ − reqd2 + r−

2

2req
−

K++,eq

2
s¹W r+d2 −

K−−,eq

2
s¹W r−d2.

s107d

The coefficients are given byseq=req and

K++,eq=
1

4
sKAA + KBB + 2KABdeq=

2D2

v2req
, s108d

K−−,eq=
1

4
sKAA + KBB − 2KABdeq=

2Dsrd2

v2req
, s109d

K+−,eq=
1

4
sKAA − KBBdeq= 0. s110d

We notice that the vanishing of the coefficients110d implies
that there is no cross term in the gradients ofr± in Eq. s107d.
The fluctuations described by Eq.s103d are Gaussian around
the equilibrium since the entropy densitys107d is quadratic.
As a consequence, the correlation functions obey the equa-
tions

S¹2 −
1

,+
2DC++srWd = 0, s111d

S¹2 −
1

,−
2DC−−srWd = 0 s112d

for rWÞ0W and with the correlation lengths

,+ ; ÎreqK++,eq=
3Î2

16an
, s113d

,− ; ÎreqK−−,eq=
3Î2

16asn − p0nr/2d
, s114d

andC+−srWd=0. These correlation lengths are of the order of
the mean free path of the particles between the scatterers of
radiusa and densityn. The correlation functions are given by
Bessel functions of zeroth order and they behave at long
distance as

C±±srWd ,
1
Îr

expS−
r

,±
D , s115d

with r =Îx2+y2. The difference between these correlation
functions characterizes the statistical correlations between
the densities of particlesA andB. The fact that the correla-
tion lengths take different values,,+Þ,−, means that the
statistical correlations between the speciesA andB are non-
trivial. A definition of entropy consistent with the second law
of thermodynamics should thus take into account the effects
of such statistical correlations in the phenomenon of cross
diffusion induced by the chemical reaction.

V. CONCLUSIONS

In this paper, we have studied a reactive random Lorentz
gas in which a point particle carrying a colorA or B sor a

spin one-halfd bounces among randomly distributed disk
scatterers. Some of these disks are catalytic in the sense that
the reactionA
B occurs with a given probabilityp0 upon
collision with these catalytic disks. In the case of a particle
with a spin, the catalytic disks correspond to impurities flip-
ping the spin. Under dilute-gas conditions, the time evolution
of the distribution functions of finding the particle with a
given color or spin at some positionrW with some velocityvW
are ruled by two coupled Boltzmann-Lorentz kinetic equa-
tions which satisfy anH theorem. TheH quantity defines the
entropy at the kinetic level of description.

The time evolution separates into a diffusion sector for the
total distribution function and a reaction sector for the differ-
ence of the distribution functions of the colors. The spectrum
of eigenmodes of both sectors can be constructed in detail.
The diffusivesreactived modes are the slowest modes among
all the modes of the diffusionsreactiond sector, which pro-
vides us with the diffusion coefficient of the diffusive mode,
as well as the reaction rate constant and the reactive diffusion
coefficient of the reactive mode. This analysis and the
knowledge of these coefficients allow us to obtain the mac-
roscopic reaction-diffusion equations. These equations
present cross-diffusion terms which are induced by the reac-
tion if the reaction probabilityp0 is not vanishing, as in pre-
vious studies of the reactive periodic Lorentz gas and multi-
baker modelsf19–23g. In the reactive random Lorentz gas,
our analysis shows that a transition happens in the reaction
sector between a regime at low concentrations of catalytic
disks and reaction probabilities and another one at high con-
centrations and probabilities.

Using the derivation of the macroscopic reaction-
diffusion equations, we have studied the problem of the en-
tropy production on the basis of the entropy defined in ki-
netic theory in terms of the distribution functions and the
associatedH theorem. The entropy of kinetic theory can be
expanded in powers of the gradients of the densities of both
colors A and B. At the lowest order of this expansion, the
entropy density is simply a function of the color densities
themselves and coincides with the expression of the phenom-
enological nonequilibrium thermodynamicsf24,25g. The bal-
ance equation of this entropy without gradient can be derived
from the macroscopic reaction-diffusion equations. Because
of the cross-diffusion effects induced by the reaction, the
resulting entropy production may become negative for ex-
treme values of the ratio between the color densities. This is
certainly a problem of principle for the phenomenological
approach. In order to solve this problem, we have considered
the entropy density at the next order of the expansion in the
gradients of color densities. At this next order, the entropy
density contains terms that are quadratic in the gradients in
addition to the contribution of the phenomenological entropy.
The balance equation of this entropy with gradients turns out
to have an entropy production that is non-negative for all the
color densities and for small enough gradients of color den-
sities, in consistency with the second law of thermodynam-
ics.

The entropy density with gradients is interpreted as the
entropic version of the Ginzburg-Landau free energy. The
addition of gradient terms is shown to be responsible for
statistical correlations in the densities of the colorsA andB
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over spatial scales of the order of the mean free path of the
particle. The consideration of these spatial correlations ap-
pears to be necessary to get a non-negative entropy produc-
tion in the presence of chemically induced cross diffusion.
The inclusion of these gradients in the entropy is justified by
the kinetic theory and by the consistency so obtained with
the second law of thermodynamics. Such an entropy func-
tional with gradients is also justifed by analogy with the
Ginzburg-Landau free energyf28,29g. The inclusion of gra-
dients in the entropy requires a departure from the classical
Onsager-Prigogine nonequilibrium thermodynamicsf24,25g.
This classical nonequilibrium thermodynamics neglects the
possible interplay between the diffusion and the reaction,
such as the cross diffusion induced by the chemical reaction.
This effect is expected in systems with a high reaction prob-
ability and high concentrations of reactants with respect to

the inert species which do not participate in the reaction. We
think that the present work clearly shows that this chemically
induced cross diffusion is compatible with kinetic theory and
the second law of thermodynamics and should be an experi-
mentally observable effect.
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